Abstract

The influence of some parameters of nitrogen-containing heterostructures InAs/GaAsN/InGaAsN with strain-compensated superlattices (SCSL) on their emission characteristics has been studied. It is established that the net strain in the structure affects the photoluminescence (PL) linewidth, internal quantum efficiency, intensity, and wavelength. The maximum PL intensity and minimum full width at half maximum (FWHM) of the PL line were achieved with small strains (0–0.2%), whereas the maximum wavelengths (∼1.76 μm) observed for large strain (about +1%). By adding multilayer InAs inserts in the active InGaAsN quantum well in combination with using strain-compensated GaAsN/InGaAsN superlattices, it is possible to control the room-temperature emission wavelength in the range of 1.45–1.76 μm without significantly deteriorating the emissiion characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.