Abstract

The results of studying the radiation due to argon, krypton, and xenon monochloride bands, as well as to the bands of chlorine molecules, from the plasma of a transverse Ar-Kr-Xe-Cl2 volume discharge are reported. The working mixture of a pulse radiation source is optimized with regard to its pressure and elemental composition and parameters of an excitation system. By numerically solving the Boltzmann kinetic equation for the electron energy distribution function, the transport characteristics of plasma electrons and discharge power specific losses are found for different values of the reduced electric field strength. The plasma parameters are simulated for the quaternary mixture, which is most appropriate for a multiwave UV-VUV source. Qualitative analysis is conducted for the most important electron processes in the multicomponent plasma that govern the joint formation of argon, krypton, and xenon monochlorides in the transverse discharge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call