Abstract

A GaSe crystal cut along the (001) crystallographic plane is investigated for the emission and detection of high-frequency (i.e. up to ∼20 THz) electric fields. To date, a comprehensive analysis on high-frequency difference frequency generation and electro-optic sensing in GaSe has not been performed and should consider aspects such as electric field polarization orientation, symmetries inherent to the crystal structure, and the various possible generation and detection phase-matching arrangements. Herein, terahertz radiation generation is investigated for various excitation electric field polarizations as the GaSe crystal is rotated in the (001) plane. Subsequently, the crystal is rotated out-of-plane to investigate the difference frequency generation and electro-optic sampling phase-matching conditions for various arrangements. The measured terahertz radiation spectra show peak generation at the frequencies of 10, 16, and 18 THz (dependent on the GaSe crystal orientation), in agreement with the frequencies exhibiting perfect phase-matching. GaSe has the potential to emerge as the primary crystal for the emission and detection of high-frequency electric fields, such that this comprehensive analysis is necessary for the widespread adoption and practical implementation of GaSe as a high-frequency source crystal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call