Abstract

This work is devoted to capturing Emirati-accented speech database (Arabic United Arab Emirates database) in each of neutral and shouted talking environments in order to study and enhance text-independent Emirati-accented speaker identification performance in shouted environment based on each of First-Order Circular Suprasegmental Hidden Markov Models (CSPHMM1s), Second-Order Circular Suprasegmental Hidden Markov Models (CSPHMM2s), and Third-Order Circular Suprasegmental Hidden Markov Models (CSPHMM3s) as classifiers. In this research, our database was collected from fifty Emirati native speakers (twenty five per gender) uttering eight common Emirati sentences in each of neutral and shouted talking environments. The extracted features of our collected database are called Mel-Frequency Cepstral Coefficients (MFCCs). Our results show that average Emirati-accented speaker identification performance in neutral environment is 94.0%, 95.2%, and 95.9% based on CSPHMM1s, CSPHMM2s, and CSPHMM3s, respectively. On the other hand, the average performance in shouted environment is 51.3%, 55.5%, and 59.3% based, respectively, on CSPHMM1s, CSPHMM2s, and CSPHMM3s. The achieved average speaker identification performance in shouted environment based on CSPHMM3s is very similar to that obtained in subjective assessment by human listeners.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.