Abstract

Predicting the synthesizability of a new molecule remains an unsolved challenge that chemists have long tackled with heuristic approaches. Here, we report a new method for predicting synthesizability using a simple yet accurate thermochemical descriptor. We introduce Emin, the energy difference between a molecule and its lowest energy constitutional isomer, as a synthesizability predictor that is accurate, physically meaningful, and first-principles based. We apply Emin to 134,000 molecules in the QM9 data set and find that Emin is accurate when used alone and reduces incorrect predictions of "synthesizable" by up to 52% when used to augment commonly used prediction methods. Our work illustrates how first-principles thermochemistry and heuristic approximations for molecular stability are complementary, opening a new direction for synthesizability prediction methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.