Abstract

The attenuation characteristics of electromagnetic interference (EMI) filters in practice often differ from theoretical predictions and minor changes can result in a significant improvement in performance. The performance of the differential-mode (DM) filter stage can usually be well predicted, but the common mode (CM) behavior is more difficult to handle. This is especially true for three-phase pulsewidth modulation (PWM) rectifier systems, which inherently show a large high-frequency CM voltage at the rectifier output. Possible CM noise current paths of a three-phase/level PWM rectifier are analyzed in this paper where parasitic capacitances to the heat sink and to earth are considered. In addition, a concept to significantly reduce CM emissions is discussed in detail. Based on the proposed models, an EMI filter design for a system with 1 MHz switching frequency is shown. Experimental verification of the designed EMI filter is presented by impedance and conducted emission (CE) measurements taken from a 10 kW prototype. Several practical aspects of filter implementation such as component arrangement, shielding layers, magnetic coupling, etc., are discussed and verified by measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.