Abstract
Powered assistive devices have been playing a major role in gait rehabilitation. This work aims to develop a user-oriented assistive strategy with an EMG-based control using a powered knee orthosis (PKO) to provide assistive commands according to the user's motion intention tracked by electromyography (EMG) signals. To achieve this goal, the work first comprised the development of a wired EMG acquisition system, the study and implementation of a knee joint torque estimation method, and the development of a real-time controller, which uses the estimated torque as the reference actuator's torque to provide user-oriented assistance in walking. We used a proportional gain method to estimate the knee torque, which required a calibration procedure, allowing to determine the relation between the EMG signal and the actuator's torque. The EMG-based control was validated with two subjects walking in a treadmill. The EMG-based control performed as expected since it proved to be functional and time-effective when assisting the user's movements in walking at different walking speeds. Findings show that the developed assistive strategy can effectively follow the user's motion intention and has the potential for gait rehabilitation of patients with residual muscular strength.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.