Abstract

An interface based on electromyographic (EMG) signals is considered one of the central fields in human-machine interface (HCI) research with broad practical use. This paper presents the recognition of 13 individual finger movements based on the time-frequency representation of EMG signals via spectrograms. A deep learning algorithm, namely a convolutional neural network (CNN), is used to extract features and classify them. Two approaches to EMG data representations are investigated: different window segmentation lengths and reduction of the measured channels. The overall highest accuracy of the classification reaches 95.5% for a segment length of 300 ms. The average accuracy attains more than 90% by reducing channels from four to three.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.