Abstract

BackgroundActive hand prostheses controlled using electromyography (EMG) signals have been used for decades to restore the grasping function, lost after an amputation. Although myocontrol is a simple and intuitive interface, it is also imprecise due to the stochastic nature of the EMG recorded using surface electrodes. Furthermore, the sensory feedback from the prosthesis to the user is still missing. In this study, we present a novel concept to close the loop in myoelectric prostheses. In addition to conveying the grasping force (system output), we provided to the user the online information about the system input (EMG biofeedback).MethodsAs a proof-of-concept, the EMG biofeedback was transmitted in the current study using a visual interface (ideal condition). Ten able-bodied subjects and two amputees controlled a state-of-the-art myoelectric prosthesis in routine grasping and force steering tasks using EMG and force feedback (novel approach) and force feedback only (classic approach). The outcome measures were the variability of the generated forces and absolute deviation from the target levels in the routine grasping task, and the root mean square tracking error and the number of sudden drops in the force steering task.ResultsDuring the routine grasping, the novel method when used by able-bodied subjects decreased twofold the force dispersion as well as absolute deviations from the target force levels, and also resulted in a more accurate and stable tracking of the reference force profiles during the force steering. Furthermore, the force variability during routine grasping did not increase for the higher target forces with EMG biofeedback. The trend was similar in the two amputees.ConclusionsThe study demonstrated that the subjects, including the two experienced users of a myoelectric prosthesis, were able to exploit the online EMG biofeedback to observe and modulate the myoelectric signals, generating thereby more consistent commands. This allowed them to control the force predictively (routine grasping) and with a finer resolution (force steering). The future step will be to implement this promising and simple approach using an electrotactile interface. A prosthesis with a reliable response, following faithfully user intentions, would improve the utility during daily-life use and also facilitate the embodiment of the assistive system.Electronic supplementary materialThe online version of this article (doi:10.1186/s12984-015-0047-z) contains supplementary material, which is available to authorized users.

Highlights

  • Active hand prostheses controlled using electromyography (EMG) signals have been used for decades to restore the grasping function, lost after an amputation

  • When the EMG biofeedback was provided, there was no need for this iterative adjustment, i.e., the subjects used the feedback to adjust the muscle contraction, generating the myoelectric signal that was close to the reference, and thereby producing the desired level of force already in the first trial

  • The present study proposes a novel paradigm to close the loop in a myoelectric prosthesis

Read more

Summary

Introduction

Active hand prostheses controlled using electromyography (EMG) signals have been used for decades to restore the grasping function, lost after an amputation. The sensory feedback from the prosthesis to the user is still missing. Human hand is a dexterous end-effector and a sophisticated instrument for sensory exploration [1]. After an amputation, these important motor and sensory functions are abruptly lost. The control signal (input voltage) driving the prosthesis motor is obtained by applying simple processing (smoothing) to the electromyography (EMG) signals. Closing the loop in myoelectric prostheses was acknowledged as an important future goal by the prospective users as well as researchers in the field [8]. Sensory feedback might improve the utility of the assistive devices as well as facilitate the embodiment [9]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call