Abstract

This paper proposes an EMG based learning approach for estimating the displacement along the 2-axes (abduction/adduction and flexion/extension) of the human wrist in real-time. The algorithm extracts features from the EMG electrodes on the upper and forearm and uses Support Vector Regression to estimate the intended displacement of the wrist. Using data recorded with the arm outstretched in various locations in space, we train the algorithm so as to allow robust prediction even when the subject moves his/her arm across several positions in space. The proposed approach was tested on five healthy subjects and showed that a R(2) index of 63.6% is obtained for generalization across different arm positions and wrist joint angles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.