Abstract

Detecting intentions and estimating movement trajectories in a human–machine interface (HMI) using electromyogram (EMG) signals is particularly challenging, especially for individuals with movement impairments. Therefore, incorporating additional information from other biological sources, potential discrete information in the movement, and the EMG signal can be practical. This study combined EMG and target information to enhance estimation performance during reaching movements. EMG activity of the shoulder and arm muscles, elbow angle, and the electroencephalogram signals of ten healthy subjects were recorded while they reached blinking targets. The reaching target was recognized by steady-state visual evoked potential (SSVEP). The selected target’s final angle and EMG were then mapped to the elbow angle trajectory. The proposed bimodal structure, which integrates EMG and final elbow angle information, outperformed the EMG-based decoder. Even under conditions of higher fatigue, the proposed structure provided better performance than the EMG decoder. Including additional information about the recognized reaching target in the trajectory model improved the estimation of the reaching profile. Consequently, this study’s findings suggest that bimodal decoders are highly beneficial for enhancing assistive robotic devices and prostheses, especially for real-time upper limb rehabilitation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.