Abstract

With the growing need for sustainable energy technologies, advanced characterization methods become more and more critical for optimizing energy materials and understanding their operation mechanisms. In this review, we focus on the synchrotron-based X-ray imaging technologies and the associated applications in gaining fundamental insights into the physical/chemical properties and reaction mechanisms of energy materials. We will discuss a few major X-ray imaging technologies, including X-ray projection imaging, transmission X-ray microscopy, scanning transmission X-ray microscopy, tender and soft X-ray imaging, and coherent diffraction imaging. Researchers can choose from various X-ray imaging techniques with different working principles based on research goals and sample specifications. With the X-ray imaging techniques, we can obtain the morphology, phase, lattice and strain information of energy materials in both 2D and 3D in an intuitive way. In addition, with the high-penetration X-rays and the high-brilliance synchrotron sources, operando/in-situ experiments can be designed to track the qualitative and quantitative changes of the samples during operation. We expect this review can broaden readers’ view on X-ray imaging techniques and inspire new ideas and possibilities in energy materials research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.