Abstract

The protein corona significantly changes the nanoparticle (NP) identity both physicochemically and biologically, and in situ regulation of specific plasma protein adsorption on NP surfaces has emerged as a promising strategy for disease-targeting therapy. In the past decade, great progress in protein corona regulation has been achieved via surface chemistry-based nanomedicine development. This review first outlines the latest advances in bio-nano interactions, with special attention to factors that influence the protein corona, including NP physicochemical properties, the biological environment and the duration time. Second, NP surface chemistry strategies designed to inhibit and regulate protein corona formation are highlighted, with special emphasis on albumin, transferrin, apolipoprotein (apo) E, vascular endothelial growth factor (VEGF) and retinol binding protein 4 (RBP4). Finally, the current techniques used to characterize the protein corona are briefly discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.