Abstract

Over the past decade, advances in methodologies for the determination of chromosome conformation have provided remarkable insight into the local and higher-order organization of bacterial and eukaryotic chromosomes. Locally folded domains are found in both bacterial and eukaryotic genomes, although they vary in size. Importantly, genomes of metazoans also possess higher-order organization into A- and B-type compartments, regions of transcriptionally active and inactive chromatin, respectively. Until recently, nothing was known about the organization of genomes of organisms in the third domain of life - the archaea. However, despite archaea possessing simple circular genomes that are morphologically reminiscent of those seen in many bacteria, a recent study of archaea of the genus Sulfolobus has revealed that it organizes its genome into large-scale domains. These domains further interact to form defined A- and B-type compartments. The interplay of transcription and localization of a novel structural maintenance of chromosomes (SMC) superfamily protein, termed coalescin, defines compartment identity. In this Review, we discuss the mechanistic and evolutionary implications of these findings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call