Abstract

Traditional therapies need high systematic dosages that not only destroys cancerous cells but also healthy cells. To overcome this problem recent advancement in nanotechnology specifically in nanomaterials has been extensively done for various biological applications, such as targeted drug delivery. Nanotechnology, as a frontier science, has the potential to break down all the obstacles to be more effective and secure drug delivery system. It is possible to develop nanopolymer based drug carrier that can target drugs with extreme accuracy. Polymers can advance drug delivery technologies by allowing controlled release of therapeutic drugs in stable amounts over long duration of time. For controlled drug delivery, biodegradable synthetic polymers have various benefits over non-biodegradable polymers. Biodegradable polymer either are less toxic or non-toxic. Polylactic Acid (PLA) is one of the most remarkable amphipathic polymers which make it one of the most suitable materials for polymeric micelles. Amphiphilic nanomaterial, such as Polyethylene Glycol (PEG), is one of the most promising carrier for tumor targeting. PLA-PEG as a copolymer has been generally utilized as drug delivery system for the various types of cancer. Chemotherapeutic drugs are stacked into PLA-PEG copolymer and as a result their duration time delays, hence medications arrive at specific tumor site.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call