Abstract

In recent years, more and more research enthusiasm has been devoted to the development of emerging two-dimensional (2D) monoelement materials (Xenes) and explored potential applications in various fields, especially biomedicine and bioimaging. The inspiring results attribute to their excellent physicochemical properties, including adjustable band gap, surface electronic layout characteristics, and so on, making it easier for surface modification in order to meet designated needs. As a popular interdisciplinary research frontier, a variety of methods for fabricating 2D Xenes have recently been adopted for pre-preparing future practical bioimaging applications, which implies that these materials will have broad clinical application prospects in the future. In this review, we will concentrate on the family of 2D Xenes and summarize their fabrication and modification methods firstly. Then, their applications in bioimaging as nanocarriers will be described according to the Periodic Table of Elements. In addition, current challenges and prospects for further clinical applications will be under discussion and use black phosphorus as a typical example. At last, general conclusion will be made that it is worth expecting that 2D Xenes will play a key role in the next generation of oncologic bioimaging in the future. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call