Abstract

Many animals undergo indirect development, where their embryogenesis produces an intermediate life stage, or larva, that is often free-living and later metamorphoses into an adult. As their adult counterparts, larvae can have unique and diverse morphologies and occupy various ecological niches. Given their broad phylogenetic distribution, larvae have been central to hypotheses about animal evolution. However, the evolution of these intermediate forms and the developmental mechanisms diversifying animal life cycles are still debated. This review focuses on Spiralia, a large and diverse clade of bilaterally symmetrical animals with a fascinating array of larval forms, most notably the archetypical trochophore larva. We explore how classic research and modern advances have improved our understanding of spiralian larvae, their development, and evolution. Specifically, we examine three morphological features of spiralian larvae: the anterior neural system, the ciliary bands, and the posterior hyposphere. The combination of molecular and developmental evidence with modern high-throughput techniques, such as comparative genomics, single-cell transcriptomics, and epigenomics, is a promising strategy that will lead to new testable hypotheses about the mechanisms behind the evolution of larvae and life cycles in Spiralia and animals in general. We predict that the increasing number of available genomes for Spiralia and the optimization of genome-wide and single-cell approaches will unlock the study of many emerging spiralian taxa, transforming our views of the evolution of this animal group and their larvae.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call