Abstract

AbstractThe transfer of structural mirror asymmetry from chiral molecules to the inorganic phase at solid‐liquid interfaces enabled rapid development of biomimetic chiral nanoparticles. They can be synthesized and assembled following a variety of chemical methods resulting in the broad family of chiral inorganic nanostructures (CNs). Their chemistry attracted large attention due to marked enhancement of circular dichroism and polarization rotation compared to organic molecules and particles, which opened application prospects in sensing, imaging, catalysis, nonlinear optics, electronics, and medicine. New physical, chemical and biological effects involving CNs such as giant optical activity, mechanical force‐assisted modulation of optical activity, photon‐to‐particle chirality transfer and suppression of amyloid toxicity have been observed. Marked strides toward enhancement of optical asymmetry (g‐factor), engineering dynamic chirality in nanostructures, and spectral range of optical activity of chiral inorganic nanostructures from the ultraviolet to terahertz regions have also been made. Here, we summarize these and other current trends in the research of chiral inorganic nanomaterials and offer our perspective how the fundamental and translational research in this area is likely to develop in the next two decades.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call