Abstract
Graphene research has progressed at an unprecedented rate since 2004 when Novoselov and Geim isolated and described a single sheet of graphene. In fact, the relentless progress in graphene literature over the past decades makes it challenging to diversify research efforts in varied directions. The superior optical, electrical, thermal, and mechanical properties of graphene usher in a broad spectrum of applications that attracts the interest of various scientific domains, including material scientists, physicists, chemists, and biologists. These exceptional properties of the graphene family of materials (Gfam) have inspired researchers to explore a cornucopia of potential applications surrounding graphene and its derivatives in the realm of bacterial, fungal, and viral cells. Herein, we provide an exhaustive discussion of the antimicrobial mechanism of Gfam against different pathogen types: bacteria, fungi, and viruses. In addition, we present the physicochemical differences among members of Gfam and the correlation of their germicidal activities to material properties. A comparative analysis of Gfam’s activities pertaining to bare metals and the enhanced broad-spectrum antimicrobial action of graphene family-based nanocomposites as well as surface coatings are also described. The review analyzes and discusses the present constraints and anticipated future directions that would enable graphene-based nanomaterials to advance as high-performance antimicrobial structures. Thus, Gfam as a robust biocidal material of interest can effectively bridge the gap between academia and industry.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.