Abstract
ObjectivesThis multicenter study, conducted from a One Health perspective, aimed to comprehensively examine the prevalence of methicillin-resistant Staphylococcus aureus (MRSA) infections and their biofilm-forming capabilities in Pakistan. Phylogenetic analysis of the study isolates was also performed. MethodsA total of 150 MRSA isolates were screened from various clinical samples using Cefoxitin antibiotic discs. Genotypic confirmation was conducted through mecA, S. aureus-specific nuc, and 16S rRNA genes. Biofilm formation was assessed using Congo red agar (CRA) and slime layer quantification methods. The intercellular adhesion (ica) operon genes, specifically icaA and icaD, were detected. Phylogenetic analysis utilized the 16S rRNA sequences. Statistical associations between various parameters were determined using chi-square analysis. ResultsThe presence of the mecA gene was observed in 131 out of 150 isolates (87.3%). CRA identified 28% and 40% of isolates as strong and moderate biofilm producers, respectively, while 9.3% were classified as non-biofilm producers. The slime layer assay exhibited higher sensitivity, classifying only 4.7% of isolates as non-biofilm producers. Biofilm-forming genes icaA and icaD were detected in 85.3% and 86.7% of the isolates, respectively. Antibiotic resistance was more prevalent among biofilm-forming isolates, particularly against ciprofloxacin, levofloxacin, erythromycin, trimethoprim-sulfamethoxazole, and fosfomycin. Ceftaroline demonstrated efficacy irrespective of biofilm-forming abilities. Conversely, non-biofilm producers exhibited complete susceptibility to clarithromycin and tigecycline. ConclusionsClinical MRSA strains exhibit a substantial potential for biofilm formation, contributing to a resistant phenotype. Routine antibiotic testing in clinical settings that overlook the biofilm aspect may lead to the failure of empiric antibiotic therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.