Abstract

Enterotoxigenic Escherichia coli (ETEC) are ubiquitous diarrheal pathogens that thrive in areas lacking basic human needs of clean water and sanitation. These genetically plastic organisms cause tremendous morbidity among disadvantaged young children, in the form of both acute diarrheal illness and sequelae of malnutrition and growth impairment. The recent discovery of additional plasmid-encoded virulence factors and elucidation of their critical role in the molecular pathogenesis of ETEC may inform new approaches to the development of broadly protective vaccines. Although the pathogens have been closely linked epidemiologically with nondiarrheal sequelae, these conditions remain very poorly understood. Similarly, while canonical effects of ETEC toxins on cellular signaling promoting diarrhea are clear, emerging data suggest that these toxins may also drive changes in intestinal architecture and associated sequelae. Elucidation of molecular events underlying these changes could inform optimal approaches to vaccines that prevent acute diarrhea and ETEC-associated sequelae.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.