Abstract
Molecular pathology, such as high-throughput genomic and proteomic profiling, identifies precise disease targets from biopsies but require tissue dissociation, losing valuable histologic and spatial context. Emerging spatial multi-omic technologies now enable multiplexed visualization of genomic, proteomic, and epigenomic targets within a single tissue slice, eliminating the need for labeling multiple adjacent slices. Although early work focused on RNA (spatial transcriptomics), spatial technologies can now concurrently capture DNA, genome accessibility, histone modifications, and proteins with spatially-resolved single-cell resolution. This review outlines the principles, advantages, limitations, and potential for spatial technologies to advance dermatologic research. By jointly profiling multiple molecular channels, spatial multiomics enables novel studies of copy number variations, clonal heterogeneity, and enhancer dysregulation, replete with spatial context, illuminating the skin's complex heterogeneity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.