Abstract

The world is moving towards decarbonization policies in the energy and industrial sectors to bring down carbon dioxide release and reach net zero emissions. Technologies to capture CO2 and use it as a feedstock to produce CO2-based chemicals and biofuels via chemical or biochemical conversion pathways can potentially reduce the amount of CO2 released. The paper serves the innovative scientific knowledge for CO2 transformation via a biochemical pathway to microalgal biomass with its subsequent treatment to biofuels and bioproducts assuming milder climatic conditions (Central or Eastern Europe, Visegrad countries or climatically related world regions). The recent trends were critically reviewed for microalgal biorefinery to reach the sustainability of microalgal-based chemicals with added value, digestion, hydrothermal liquefaction, pyrolysis, and gasification of microalgal residues. Knowledge-based chemical process engineering analysis, systematic data synthesis, and critical technical evaluation of available life cycle assessment studies evaluated the sustainability of microalgal biorefinery pathways. The research showed that biological CO2 fixation using water, seawater or wastewater to produce third-generation biomass is a promising alternative for bioethanol production via pretreatment, enzymatic hydrolysis, digestion, and distillation, and can be realized on a large scale in an economically viable and environmentally sound manner. Its best economically promising and sustainable pathway is perceived in producing microalgal-based nutraceuticals, bioactive medical products, and food products such as proteins, pigments, and vitamins. Machine learning methods for data mining, process control, process optimization, and geometrical configuration of reactors and bioreactors are the crucial research needs and challenges to implementing microalgal biorefinery in an operational environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.