Abstract

AbstractAqueous rechargeable zinc–iodine batteries have gained traction as a promising solution due to their suitable theoretical energy density, cost‐effectiveness, eco‐friendliness, and safety features. However, challenges such as the polyiodide shuttle effect, low iodine cathode conductivity, zinc anode dendritic growth, and the requirement for efficient separators and electrolytes hinder their commercial prospects. Hence, this review highlights recent progress in refining the core optimization strategies of zinc–iodine batteries, focusing on enhancements to the cathode, anode, separator, and electrolyte. Cathode improvements involve the addition of inorganic, organic, and hybrid materials to counteract the shuttle effect and boost redox kinetics, where these functional materials also are applied in anode modifications to curb dendritic growth and enhance cycling stability. Meanwhile, cell separator design approaches that effectively block polyiodide shuttle while promoting uniform zinc deposition are also discussed, while electrolyte innovations target zinc corrosion and polyiodide dissolution. Ultimately, the review aims to map out a strategy for developing zinc–iodine batteries that are efficient, safe, and economical, aligning with the demands of contemporary energy storage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.