Abstract
The persistence and functionality of forest ecosystems are highly dependent on their resilience to the ongoing rapid changes in climate conditions and in natural and anthropogenic pressures. Experimental evidences of a sudden increase in tree mortality across different biomes are rising concerns about the ongoing changes in forest resilience. However, how forest resilience, which is the capacity to withstand and recover from perturbations, is evolving in response to global changes is not yet explored. Here, we integrate satellite-based vegetation indices with machine learning to show how forest resilience, quantified in terms of critical slowing down indicators, has changed over the period 2000-2020. We show that tropical, arid and temperate forests are experiencing a significant decline in resilience, likely related to the increase in water limitations and climate variability. On the contrary, boreal forests show an increasing trend in resilience, likely for the benefits of climate warming and CO2 fertilization in cold biomes, which may outweigh the adverse effects of climate change. These patterns emerge consistently in both managed and intact forests corroborating the existence of common large-scale climate drivers. Reductions in resilience are statistically linked to abrupt declines in forest productivity, occurring in response to a slow drifting toward a critical resilience threshold. We estimate that about 22% of intact undisturbed forests, corresponding to 3.32 Pg C of GPP, have already reached such critical threshold and are experiencing a further degradation in resilience. Altogether, these signals reveal a widespread and increasing instability of global forests and should be accounted for in the design of land-based mitigation and adaption plans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.