Abstract
R-loops are comprised of a DNA:RNA hybrid and a displaced single-strand DNA (ssDNA) that reinvades the DNA duplex behind the moving RNA polymerase. Because they have several physiological functions within the cell, including gene expression, chromosomal segregation, and mitochondrial DNA replication, among others, R-loop homeostasis is tightly regulated to ensure normal functioning of cellular processes. Thus, several classes of enzymes including RNases, helicases, topoisomerases, as well as proteins involved in splicing and the biogenesis of messenger ribonucleoproteins, have been implicated in R-loop prevention, suppression, and resolution. There exist six topoisomerase enzymes encoded by the human genome that function to introduce transient DNA breaks to relax supercoiled DNA. In this mini-review, we discuss functions of DNA topoisomerases and their emerging role in transcription, replication, and regulation of R-loops, and we highlight how their role in maintaining genome stability can be exploited for cancer therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mutation Research - Genetic Toxicology and Environmental Mutagenesis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.