Abstract

Recent studies have shed light on the diverse and complex roles of G-protein coupled receptors (GPCRs) in the pathophysiology of stroke. These receptors constitute a large family of seven transmembrane-spanning proteins that play an intricate role in cellular communication mechanisms which drive both tissue injury and repair following ischemic stroke. Orphan GPCRs represent a unique sub-class of GPCRs for which no natural ligands have been found. Interestingly, the majority of these receptors are expressed within the central nervous system where they represent a largely untapped resource for the treatment of neurological diseases. The focus of this review will thus be on the emerging roles of two brain-expressed orphan GPCRs, GPR37 and GPR37 L1, in regulating various cellular and molecular processes underlying ischemic stroke.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call