Abstract

ABSTRACTAnalogous to the opsin-based receptors in animals, plants contain a diverse and elaborate set of photoreceptors to perceive a much wider spectrum of light and adapt to varying light conditions. Cryptochromes (CRYs), the blue/UV-A light sensing receptors, represent one such class of photoreceptors found ubiquitously in plants. Although structurally similar to DNA photolyases which could repair UV-induced DNA damage, photoactivated CRYs, instead, initiate signal transduction pathways, which lead to gene expression changes and eventually more overt photomorphogenic responses. Apart from the well-established roles of CRYs in regulating seedling de-etiolation, flowering time, and circadian clock, recent reports have highlighted their roles in controlling other aspects of plant development as well. This review attempts to describe the novel/atypical roles of CRYs that have emerged in the past few years, and also present an account of the various signaling components involved in CRY signal transduction pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.