Abstract

ABSTRACTCatalytic conversion (hydrolysis) of carbohydrate polymers present in the lignocellulosic biomass into fermentable sugars is a key step in the production of bioethanol. Although, acid and enzymatic catalysts are conventionally used for the catalysis of various lignocellulosic biomass, recently application of immobilized enzymes (biocatalysts) have been considered as the most promising approach. Immobilization of different biocatalysts such as cellulase, β-glucosidase, cellobiose, xylanase, laccase, etc. on support materials including nanomaterials to form nanobiocatalyst increases catalytic efficacy and stability of enzymes. Moreover, immobilization of biocatalysts on magnetic nanoparticles (magnetic nanobiocatalysts) facilitates easy recovery and reuse of biocatalysts. Therefore, utilization of nanobiocatalysts for catalysis of lignocellulosic biomass is helpful for the development of cost-effective and ecofriendly approach. In this review, we have discussed various conventional methods of hydrolysis and their limitations. Special emphasis has been made on nanobiocatalysts used for hydrolysis of lignocellulosic biomass. Moreover, the other most important aspects, like nanofiltration of biomass, conversion of lignocellulose to nanocellulose, and toxicological issues associated with application of nanomaterials are also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call