Abstract

Osteoarthritis (OA) is a common degenerative disorder of the articular cartilage, which is associated with hypertrophic changes in the bone, synovial inflammation, subchondral sclerosis, and joint space narrowing (JSN). Radiography remains thefirst line of imaging till now. Due to the lack of soft-tissue depiction in radiography, researchers are exploring various imaging techniques to detect OA at an early stage and understand its pathophysiology to restrict its progression and discover disease-modifying agents in OA. As the OA relates to the degradation of articular cartilage and remodeling of the underlying bone, an optimal imaging tool must be sensitive to the bone and soft tissue health. In that line, many non-invasive imaging and minimally invasive techniques have been explored. Out of these, the non-invasive compositional magnetic resonance imaging (MRI) for evaluation of the integrity of articular cartilage and positron emission tomography (PET) scan with fluorodeoxyglucose (FDG) and more specific bone-seeking tracer like sodium fluoride (18F-NaF) for bone cartilage interface are some of the leading areas of ongoing work. Integrated PET-MRI system, a new hybrid modality that combines the virtues of the above two individual modalities, allows detailed imaging of the entire joint, including soft tissue cartilage and bone, and holds great potential to research complex disease processes of OA. This narrative review attempts to signify individual characteristics of MRI, PET, the fusion of these characteristics in PET-MRI, and the ongoing research on PET-MRI as a potential tool to understand the pathophysiology of OA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call