Abstract

Efforts to create new nanoparticle-biomolecule hybrids for diverse applications including biosensing, theranostics, drug delivery, and even biocomputation continue to grow at an unprecedented rate. As the composite designs become more sophisticated, new and unanticipated physicochemical phenomena are emerging at the nanomaterial-biological interface. These phenomena arise from two interrelated factors, namely, the novel architecture of nanoparticle bioconjugates and the unique physicochemical properties of their interfacial environment. Here we examine how the augmented functionality imparted by such hybrid structures, including accessing concentric energy transfer, enhanced enzymatic activity, and sensitivity to electric fields, is leading to new applications. We discuss some lesser-understood phenomena that arise at the nanoparticle interface, such as the complex and confounding issue of protein corona formation, along with their unexpected benefits. Overall, understanding these complex phenomena will improve the design of composite materials while uncovering new opportunities for their application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call