Abstract

Osteoporotic fractures are an important public health problem, contributing substantially to morbidity and mortality in an ageing world population and consuming considerable health resources. Presently available pharmacologic therapies for prevention of fragility fractures are limited in scope, efficacy and acceptability to patients. Considerable efforts are being made to develop new, more effective treatments for osteoporosis, and to refine/optimize existing therapies. These novel treatments include an expanding array of drugs that primarily inhibit osteoclastic bone resorption: estrogenic compounds, bisphosphonates, inhibitors of receptor activator of NF-κB ligand signaling, cathepsin K inhibitors, c-src kinase inhibitors, integrin inhibitors and chloride channel inhibitors. The advent of intermittent parathyroid hormone (PTH) therapy has provided proof-of-principle that osteoblast-targeted (anabolic) agents can effectively prevent osteoporotic fractures, and is likely to be followed by the introduction of other therapies based on PTH (orally active PTH analogs, antagonists of the calcium sensing receptor, PTH-related peptide analogs) and/or agents that induce osteoblast anabolism by means of pathways involving key, recently identified, molecular targets (wnt-low-density lipoprotein receptor-related protein 5 signaling, sclerostin and matrix extracellular phosphoglycoprotein).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.