Abstract

With the advancement of radio access networks, more and more mobile data content needs to be transported by optical networks. Mobile fronthaul is an important network segment that connects centralized baseband units (BBUs) with remote radio units in cloud radio access networks (C-RANs). It enables advanced wireless technologies such as coordinated multipoint and massive multiple-input multiple-output. Mobile backhaul, on the other hand, connects BBUs with core networks to transport the baseband data streams to their respective destinations. Optical access networks are well positioned to meet the first optical communication demands of C-RANs. To better address the stringent requirements of future generations of wireless networks, such as the fifth-generation (5G) wireless, optical access networks need to be improved and enhanced. In this paper, we review emerging optical access network technologies that aim to support 5G wireless with high capacity, low latency, and low cost and power per bit. Advances in high-capacity passive optical networks (PONs), such as 100  Gbit/s PON, will be reviewed. Among the topics discussed are advanced modulation and detection techniques, digital signal processing tailored for optical access networks, and efficient mobile fronthaul techniques. We also discuss the need for coordination between RAN and PON to simplify the overall network, reduce the network latency, and improve the network cost efficiency and power efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.