Abstract

Despite significant advancements in medical technology, cancer remains the world's second‐leading cause of death, largely attributed to late‐stage diagnoses. While traditional cancer detection methodologies offer foundational insights, they often lack the specificity, affordability, and sensitivity for early‐stage identification. In this context, the development of biosensors offers a distinct possibility for the precise and rapid identification of cancer biomarkers. Carbon nanomaterials, including graphene, carbon nitride, carbon quantum dots, and other carbon‐based nanostructures, are highly promising for cancer detection. Their simplicity, high sensitivity, and cost‐effectiveness contribute to their potential in this field. This review aims to elucidate the potential of emerging carbon‐nanomaterial‐based biosensors for early cancer diagnosis. The relevance of the various biosensor mechanisms and their performance to the physicochemical properties of carbon nanomaterials is discussed in depth, focusing on demonstrating broad methodologies for creating performance biosensors. Diverse carbon‐nanomaterial‐based detection techniques, such as electrochemical, fluorescence, surface plasmon resonance, electrochemiluminescence, and quartz crystal microbalance, are emphasized for early cancer detection. At last, a summary of existing challenges and future outlook in this promising field is elaborated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.