Abstract
The von Neumann architecture with separate memory and processing presents a serious challenge in terms of device integration, power consumption, and real-time information processing. Inspired by the human brain that has highly parallel computing and adaptive learning capabilities, memtransistors are proposed to be developed in order to meet the requirement of artificial intelligence, which can continuously sense the objects, store and process the complex signal, and demonstrate an "all-in-one" low power array. The channel materials of memtransistors include a range of materials, such as two-dimensional (2D) materials, graphene, black phosphorus (BP), carbon nanotubes (CNT), and indium gallium zinc oxide (IGZO). Ferroelectric materials such as P(VDF-TrFE), chalcogenide (PZT), HfxZr1-xO2(HZO), In2Se3, and the electrolyte ion are used as the gate dielectric to mediate artificial synapses. In this review, emergent technology using memtransistors with different materials, diverse device fabrications to improve the integrated storage, and the calculation performance are demonstrated. The different neuromorphic behaviors and the corresponding mechanisms in various materials including organic materials and semiconductor materials are analyzed. Finally, the current challenges and future perspectives for the development of memtransistors in neuromorphic system applications are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.