Abstract
Reductions in sulfur (S) atmospheric deposition in recent decades have been attributed to S deficiencies in crops. Similarly, global soil selenium (Se) concentrations were predicted to drop, particularly in Europe, due to increases in leaching attributed to increases in aridity. Given its international importance in agriculture, reductions of essential elements, including S and Se, in European soils could have important impacts on nutrition and human health. Our objectives were to model current soil S and Se levels in Europe and predict concentration changes for the 21st century. We interrogated four machine-learning (ML) techniques, but after critical evaluation, only outputs for linear support vector regression (Lin-SVR) models for S and Se and the multilayer perceptron model (MLP) for Se were consistent with known mechanisms reported in literature. Other models exhibited overfitting even when differences in training and testing performance were low or non-existent. Furthermore, our results highlight that similarly performing models based on RMSE or R2 can lead to drastically different predictions and conclusions, thus highlighting the need to interrogate machine learning models and to ensure they are consistent with known mechanisms reported in the literature. Both elements exhibited similar spatial patterns with predicted gains in Scandinavia versus losses in the central and Mediterranean regions of Europe, respectively, by the end of the 21st century for an extreme climate scenario. The median change was -5.5% for S (Lin-SVR) and -3.5% (MLP) and -4.0% (Lin-SVR) for Se. For both elements, modeled losses were driven by decreases in soil organic carbon, S and Se atmospheric deposition, and gains were driven by increases in evapotranspiration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.