Abstract

We construct a fully quantum zero-temperature electron star in a soft-wall regulated anti-de-Sitter Einstein-Maxwell-Dirac theory that is thermodynamically stable compared to the Reissner-Nordström black hole. The soft wall only acts on the effective mass of the fermionic degrees of freedom, and allows for a controlled fully backreacted solution. The star is holographically dual to an RG flow where a gapped Fermi liquid starts to emerge from a UV CFT, but decouples again once the effective energy scale becomes lower than the gap of the fermionic degrees of freedom. The RG flow then returns to a non-trivial strongly coupled relativistic fixed point with a holographic dual. Our regulated quantum electron star is thus the fermionic analogue of the Horowitz-Roberts-Gubser-Rocha AdS-to-AdS domain wall solution for the holographic superconductor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.