Abstract

Oscillatory networks are a special class of neural networks where each neuron exhibits time periodic behavior. They represent bio-inspired architectures which can be exploited to model biological processes such as the binding problem and selective attention. In this paper we investigate the dynamics of networks whose neurons are hard oscillators, namely they exhibit the coexistence of different stable attractors. We consider a constant external stimulus applied to each neuron, which influences the neuron's own natural frequency. We show that, due to the interaction between different kinds of attractors, as well as between attractors and repellors, new interesting dynamics arises, in the form of synchronous oscillations of various amplitudes. We also show that neurons subject to different stimuli are able to synchronize if their couplings are strong enough.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.