Abstract

P-glycoprotein (P-gp or ABCB1) is a member of the broad family of ABC transporters. P-gp participates in the establishment of physiological barriers limiting cellular access of a large number of toxic compounds. It thus plays important roles in the pharmacokinetics of these compounds. Cancer cells and cells infected by viruses exploit the presence of P-gp to fend off drug treatment, rendering them multidrug-resistant. Overcoming multidrug resistance caused by expression of ABC transporters has gained increasing attention in the field of drug development. Recently, studies of P-gp, especially from structural investigations by both cryo-electron microscopy and X-ray crystallography, have provided high-resolution mechanistic details for the function of this transporter. Structures with increasing resolution and accuracy in various substrate- and inhibitor-bound forms are available for analysis and a consensus on the mechanism of substrate polyspecificity is emerging. The use of new structural information may aid development of P-gp inhibitors as well as compounds that may bypass P-gp action.

Highlights

  • Multidrug resistance (MDR), the simultaneous development of cellular resistance to multiple anticancer drugs, remains a major obstacle in effective treatment of cancer by chemotherapy[1]

  • Multiple mechanisms are known in MDR development, one well-studied mechanism is the overexpression of ATP-dependent efflux pumps, represented by ABC transporters such as P-glycoprotein (P-gp or ABCB1)

  • We review recent efforts in the field to understand, both biochemically and structurally, the mechanism of function of mammalian P-glycoprotein, focusing on the mechanism of substrate specificity

Read more

Summary

Introduction

Multidrug resistance (MDR), the simultaneous development of cellular resistance to multiple anticancer drugs, remains a major obstacle in effective treatment of cancer by chemotherapy[1]. In an attempt to obtain higher resolution structures in an outward-open conformation, Esser and colleagues created a mP-gp mutant (lnkmP-gp) with a linker shortened by 34 residues.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.