Abstract
The lungs are a major target for infection and a key battleground in the fight against the development of antimicrobial drug-resistant pathogens. Ventilator-associated pneumonia (VAP) is associated with mortality rates of 24-50%. The optimal duration of antibiotic therapy against VAP is unknown, but prolonged courses are associated with the emergence of bacterial resistance. De-escalation strategies in which treatment is discontinued based on signs of clinical resolution, fixed durations of therapy (generally 7-8 d), or serum procalcitonin responses have been shown to decrease antibiotic consumption. Outcomes are comparable to longer treatment courses, with the possible exception of VAP due to nonfermenting, gram-negative bacilli such as Pseudomonas aeruginosa. Staphylococcus aureus is a leading cause of VAP and other infections. Outcomes after S. aureus infection are shaped by the interplay between environmental, bacterial, and host genetic factors. It is increasingly clear that mechanisms of pathogenesis vary in different types of S. aureus infections. Genome-scale studies of S. aureus strains, host responses, and host genetics are redefining our understanding of the pathogenic mechanisms underlying VAP. Genome-sequencing technologies are also revolutionizing our understanding of the molecular epidemiology, evolution, and transmission of influenza. Deep sequencing using next-generation technology platforms is defining the remarkable genetic diversity of influenza strains within infected hosts. Investigators have demonstrated that antiviral drug-resistant influenza may be present prior to the initiation of treatment. Moreover, drug-resistant minor variant influenza strains can be transmitted from person to person in the absence of selection pressure. Studies of lung infections and the causative pathogens will remain at the cutting edge of clinical and basic medical research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.