Abstract
Human breast milk is a primary route of exposure to perfluoroalkyl substances (PFAS) in infants. To understand the associated risks, the occurrence of PFAS in human milk and the toxicokinetics of PFAS in infants need to be addressed. We determined levels of emerging and legacy PFAS in human milk and urine samples from Chinese breastfed infants, estimated renal clearance, and predicted infant serum PFAS levels. In total, human milk samples were collected from 1,151 lactating mothers in 21 cities in China. In addition, 80 paired infant cord blood and urine samples were obtained from two cities. Nine emerging PFAS and 13 legacy PFAS were analyzed in the samples using ultra high-performance liquid chromatography tandem mass spectrometry. Renal clearance rates () of PFAS were estimated in the paired samples. PFAS serum concentrations in infants ( year of age) were predicted using a first-order pharmacokinetic model. All nine emerging PFAS were detected in human milk, with the detection rates of 6:2 Cl-PFESA, PFMOAA, and PFO5DoDA all exceeding 70%. The level of 6:2 Cl-PFESA in human milk () ranked third after PFOA () and PFOS (). The estimated daily intake (EDI) values of PFOA and PFOS exceeded the reference dose (RfD) of recommended by the U.S. Environmental Protection Agency in 78% and 17% of breastfed infant samples, respectively. 6:2 Cl-PFESA had the lowest infant (), corresponding to the longest estimated half-life of 49 y. The average half-lives of PFMOAA, PFO2HxA, and PFO3OA were 0.221, 0.075, and 0.304 y, respectively. The of PFOA, PFNA, and PFDA were slower in infants than in adults. Our results demonstrate the widespread occurrence of emerging PFAS in human milk in China. The relatively high EDIs and half-lives of emerging PFAS suggest potential health risks of postnatal exposure in newborns. https://doi.org/10.1289/EHP11403.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.