Abstract

Although the liver possesses a unique, innate ability to regenerate through mass compensation, transplantation remains the only therapy when damage outpaces regeneration, or liver metabolic capacity is irreversibly impacted. Recent insight from developmental biology has greatly influenced the advancement of alternative options to transplantation in these settings. Factors known to direct liver cell specification, expansion, and differentiation have been used to generate hepatocyte-like cells from stem and somatic cells for developing cell therapies. Additionally, interactions between hepatic epithelial and nonepithelial cells key to establishing hepatic architecture have been used in tissue engineering approaches to advance self-organizing hepatic organoids and bioartificial liver devices. Simultaneously, recent clinically applicable advances in human hepatocyte transplantation and promotion of innate hepatic regeneration have been limited. Although mature hepatocytes have the potential to bridge to, or replace whole organ transplantation, limits in the ability to obtain healthy cells, stabilize in-vitro expansion, cryopreserve, and alleviate rejection, still exist. Alternative sources for generating hepatocytes hold promise for cell therapy and tissue engineering. These may allow generation of autologous or universal donor cells that eliminate the need for immunosuppression; however, limits exist regarding hepatocyte maturity and efficacy at liver repopulation, as well as applicability to human chronic liver disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.