Abstract

Nonequilibrium thermodynamic theory has much to offer in explaining ecological and evolutionary processes. Formalizing biological processes in terms of thermodynamic parameters reveals that the generation of natural organization and complexity is an emergent property of entropy in systems maintained far from equilibrium. Understanding the interplay between thermodynamics, ecology and evolution provides key insights into how underlying stochastic dynamics such as mutation and drift yield highly structured populations and communities. Here, a stochastic mathematical model of ecological evolution, the Tangled Nature Model, is utilized to explore the ecological dynamics and the emergence of structure that are so crucial to biology. The results of the model's simulations demonstrate that the punctuated equilibria successively generated by the model's dynamics have increasing entropies, and that this leads to emergent order, organization, and complexity over time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.