Abstract
The two-dimensional spin-1/2 kagome Heisenberg antiferromagnet is believed to host quantum spin liquid (QSL) states with no magnetic order, but its ground state remains largely elusive. An important outstanding question concerns the presence or absence of the 1/9 magnetization plateau, where exotic quantum states, including topological ones, are expected to emerge. Here we report the magnetization of a recently discovered kagome QSL candidate YCu_{3}(OH)_{6.5}Br_{2.5} up to 57T. Above 50T, a clear magnetization plateau at 1/3 of the saturation moment of Cu^{2+} ions is observed, supporting that this material provides an ideal platform for the kagome Heisenberg antiferromagnet. Remarkably, we found another magnetization plateau around 20T, which is attributed to the 1/9 plateau. The temperature dependence of this plateau reveals the presence of the spin gap. The observation of 1/9 and 1/3 plateaus highlights the emergence of novel states in quantum spin systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.