Abstract

A closed chain of oscillators can be considered a model for ring-shaped ecosystems, such as atolls or the coastal zones of inland reservoirs. We use the logistic map, which is often referred to as an archetypical example of how complex dynamics can arise from very simple nonlinear equations, as a model for a separate oscillator in the chain. We present an original algorithm that allows us to find solutions to the spatiotemporal logistic equation quite efficiently or to state with certainty that there are no such solutions. Based on the Shannon formula, we propose formulas for estimating the spatial and temporal entropy, which allow us to classify our solutions as regular or irregular. We show that regular solutions can occur within the Malthus parameter region that corresponds to the irregular dynamics of a solitary logistic map.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.