Abstract

In periodic systems of interacting electrons, Fermi and Luttinger surfaces refer to the locations within the Brillouin zone of poles and zeros, respectively, of the single-particle Green’s function at zero energy and temperature. Such difference in analytic properties underlies the emergence of well-defined quasiparticles close to a Fermi surface, in contrast to their supposed non-existence close to a Luttinger surface, where the single-particle density-of-states vanishes at zero energy. We here show that, contrary to such common belief, dispersive ‘quasiparticles’ with infinite lifetime do exist also close to a pseudo-gapped Luttinger surface. Thermodynamic and dynamic properties of such ‘quasiparticles’ are just those of conventional ones. For instance, they yield well-defined quantum oscillations in Luttinger surface and linear-in-temperature specific heat, which is striking given the vanishing density of states of physical electrons, but actually not uncommon in strongly correlated materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.