Abstract

We consider the ordering of particles in a rheoscopic fluid (a suspension of microscopic rod-like particles) in a steady two-dimensional flow, and discuss its consequences for the reflection of light. The ordering is described by an order parameter which is a non-oriented vector, obtained by averaging solutions of a nonlinear equation containing the strain rate of the fluid flow. Exact solutions of this equation are obtained from solutions of a linear equation which are analogous to Bloch bands for a one-dimensional Schrödinger equation with a periodic potential. On some contours of the stream function, the order parameter approaches a limit, and on others it depends increasingly sensitively upon position. However, in the long-time limit a local average of the order parameter is a smooth function of position in both cases. We analyse the topology of the order parameter and the structure of the generic zeros of the order parameter field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call