Abstract

Motivated by the recent developments on cluster Mott insulating materials such as the cluster magnet LiZn$_2$Mo$_3$O$_8$, we consider the strong plaquette charge ordered regime of the extended Hubbard model on a breathing Kagome lattice and reveal the properties of the cluster Mottness. The plaquette charge order arises from the inter-site charge interaction and the collective motion of three localized electrons on the hexagon plaquettes. This model leads naturally to a reduction of the local moments by 2/3 as observed in LiZn$_2$Mo$_3$O$_8$. Furthermore, at low temperatures each hexagon plaquette contains an extra orbital-like degree of freedom in addition to the remaining spin 1/2. We explore the consequence of this emergent orbital degree of freedom. We point out the interaction between the local moments is naturally described by a Kugel-Khomskii spin-orbital model. We develop a parton approach and suggest a spin liquid ground state with spinon Fermi surfaces for this model. We further predict an emergent orbital order when the system is under a strong magnetic field. Various experimental consequences for LiZn$_2$Mo$_3$O$_8$ are discussed, including an argument that the charge ordering much be short ranged if the charge per Mo is slightly off stoichiometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.