Abstract

Broken spatial and time reversal symmetries in materials often give rise to new emergent phenomena in the interaction between light and matter. The combination of chirality and broken time reversal symmetry in a magnetic field leads to magneto–chiral phenomena, such as the nonreciprocity of transmission. Here, we construct a terahertz hybrid metamaterial that combines the natural optical activity of a chiral metallic gammadion bilayer and the magneto-optical activity of semiconductor indium antimonide in a magnetic field. We report a resonant magneto–chiral effect that leads to polarization-independent nonreciprocal optical transmittance. Furthermore, we discover a magneto-optical Faraday effect that is resonantly controlled by the natural optical activity of the chiral gammadion bilayer. Unlike optical activity due to chirality, the novel Faraday effect is odd under time reversal. Both phenomena are activated by a modest magnetic field, which may open doors for their potential applications in polarization-independent optical isolation and highly efficient polarization control at terahertz frequencies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call