Abstract

We study the formation of bound states in a one-dimensional, single-component Fermi chain with attractive interactions. The phase diagram, computed from DMRG (density matrix renormalization group), shows not only a superfluid of paired fermions (pair phase) and a liquid of fermion triplets (trion phase), but also a phase with two gapless modes. We show that the latter phase is described by a 2-component Tomonaga-Luttinger liquid (TLL) theory, consisting of one charged and one neutral mode. We argue based on our numerical data, that the single, pair, and trion phases are descendants of the 2-component TLL theory. We speculate on the nature of the phase transitions amongst these phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.